Problem 86

The length and width of a rectangular room are measured to be $3.955 \pm 0.005 \mathrm{~m}$ and $3.050 \pm 0.005 \mathrm{~m}$. Calculate the area of the room and its uncertainty in square meters.

Solution

Multiply the upper bounds for length and width to get the maximum area, and multiply the lower bounds for length and width to get the minimum area.

$$
\begin{array}{ll}
\text { Maximum Area: } & (3.955+0.005 \mathrm{~m})(3.050+0.005 \mathrm{~m}) \approx 12.10 \mathrm{~m}^{2} \\
\text { Minimum Area: } & (3.955-0.005 \mathrm{~m})(3.050-0.005 \mathrm{~m}) \approx 12.03 \mathrm{~m}^{2}
\end{array}
$$

Therefore, the area of the room is about

$$
\begin{gathered}
\left(\frac{12.10+12.03}{2} \pm \frac{12.10-12.03}{2}\right) \mathrm{m}^{2} \\
12.06 \pm 0.035 \mathrm{~m}^{2} .
\end{gathered}
$$

